
Ecotoxicology and Benefit-Cost Analysis:

The Role of Error Propagation

Introduction

An understandable desire exists on the part of policy makers to devise a

set of procedures! an analytical approach, that can be used to guide policy.

Such an approach would obviate the need for trusting to historical practice,

or to the intuition of wise but inevitably fallible and probably biased

Individuals, or to the awkward and time-consuming process of making every

decision by plebiscite. It would “rationalizeW policy making and, if the

procedure were appropriately chosen, optimize the well-being of the affected

sector of the public. Pollution abatement policy is a prime example, for

it is here that a vigorous effort is underway to promote benefit-cost analysis

as the appropriate analytical approach for determining proper emission levels

(see U.S. Executive Order 12291).

Despite the advantages in efficiency of decision making, and possibly in

enhancement of societal welfare, that may accrue to a society that employs the

benefit-cost approach to set pollution emission levels, there are major

pitfalls lurking that need to be identified and discussed. These pitfalls

fall into two categories: limitations in the ability of ecologists to describe

precisely the ecological consequences of

limitations in the ability of economists to

consequences of ecological changes.

pollutant emission rates, and

describe precisely the economic

Quite generally, the economic and ecological analyses that are required to

characterize and quantify costs and benefits of particular pollutant abatement

strategies consist of a sequence of steps. Table 1 shows what a typical

sequence of steps would have to look like for a believable benefit-cost

1



I Change in a polluting activity
(e.g., placement of scrubbers
in Dower Dlants) I

lJf (combustion science)m

Change in emission levels

#d (atmospheric sciences)
●

Change in primary. stress on
ecosystem (e.g., increase in pH
of precipitation at a particular
watershed)

34 (biogeochemistry)
9

~Change in secondary stresses (which I
act directly on biological populatio~s
and processes) (e.g., increase in pH
of surface waters and soils) I

4J (biological toxicology)

‘Direct biological effects of change
,in secondary stresses (e.g., increas
Iin populations of acid-sensitive
Iplankton)

N? (ecology)s

Indirect ecological changes
stimulated by the direct biological
effects (e.g., improvement in
fish productivity)

I
(environmental sciences,
sociology, . ..)

Direct market value of
changed use patterns and
of indirect benefits (e.g.,
value of user-day fees and
additional water supply);
value of other benefits
(e.g., feelings of civic
accomplishment, spiritual
satisfaction)

1

(economics and the
political process)

Change in pattern of direct use of ecosystem
(e.g., fishermen flock to site)

Change in indirect ecological benefits to
society (e.g., hydrologic integrity of
watershed is enhanced, leading to reduction
in fluctuations of water supplies to people)
wh

Table 1. The stages of ecosystem impact assessment
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analysis, with the example of acid rain used to provide specificity. The

information that must be used to quantify any given step in the sequence must

come from analysis at the preceding stage. Thus the possibility exists that

error may propagate through the sequence to the point where the final output--

for example, the economic benefit of a particular level of pollution

abatement-- is so uncertain as to be of little or no use in a benefit-cost

analysis or related procedure.

Whether or not this occurs will depend in part on the degree to which

ecologists and other environmental scientists can characterize the uncertainty

in a manner that can be used by economists. To take a simple example,

consider the statement that the decrease in fish mortality following pollution

abatement in a particular lake is uncertain. This statement may mean that

the decrease in mortality cannot be predicted accurately but that the odds of

any specified degree of decrease in mortality are known (from some combination

of measurement and modeling). Or it may mean that only the range of

uncertainty is known but that the probabilities of any particular value of

mortality within that range are not known. In the former case, economists

may be able to estimate an expected value of benefit of any particular degree

of abatement (using methods such as those described elsewhere in this report),

whereas in the latter case the opportunity to characterize the benefit of any

particular degree of abatement is considerably more limited.

In the remainder of this chapter we discuss in a systematic and general

manner the subject of error propagation in environmental impact assessment,

with an emphasis on impacts involving ecosystems. We deduce some general

results about error propagation that are Independent of the method of

analysis. One key result is that error tends to ‘biomagnifyw in ecological

food chains, so that a

pollutant on the lowest

small degree of uncertainty about the effect of a

trophic level is likely to translate into much more
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substantial uncertainty about the effects on higher trophic levels, in which

we are often more interested. We also explore the origin of some of the

most refractory types of error in impact assessment. To relate the analysis

to the specific concerns of practitioners of economic evaluation we also show

how the relevant issue is not merely one of the magnitude of the range of

uncertainty but also of the type of uncertainty; this is because economic

analysis, which must begin where ecological analysis leaves off, can cope with

some kinds of uncertainties better than others. Of particular concern in the

context of benefit-cost analysis is the degree to which sources of ecological

uncertainties can be characterized in ways that will be of use to economists.

The overall dimensions and a few critical elements of this problem are

discussed here, but it will be shown that considerable work on the part of

ecologists will be necessary to bridge the gap between what is now known and

what needs to be known to provide a plausible underpinning for the successful

application of benefit-cost methods of decision-making.

Uncertainty in Impact Assessment: an Example— —

Examples of error propagation in environmental science abound. Consider

the acid rain example from Table 1. Analysts have attempted to establish the

existence and valuse of a threshold level of precipitation pH, below which

lakes would become acidic and above which the natural restorative capacity of

lakes and surrounding soils would afford protection. The existence of such a

threshold would make the task of setting standards easier because such a

threshold would provide a natural level to aim for--tightening the standard

beyond the threshold would lead to diminishing returns.

However, uncertainties in impact assessment render the threshold notion a

highly dubious one in this context. It is likely, in fact, that one’s



perception of the location of the threshold for a particular class of lakes

depends on how long one has been observing those lakes under various levels of

exposire;  whereas precipitation with a pH of, say, 4.5 might acidify the lakes

in 10 years, precipitation with a higher pH of, say, 4.9 might acidify the

lakes in 30 years, a period longer than anyone has had the opportunity to

observe. Thus the threshold concept Is time-dependent and intrinsic

uncertainty characterizes its evaluation

The threshold value for one class of lakes might not be of much use for

others. For example, in eastern North America it has been pointed out that

over several decades, the period over which observations have been made, lakes

receiving precipitation with a pH of less than about 4.7 have had their

chemistry altered by the precipitation. Even if we accept this relatively

short time-frame for that particular group of lakes, there is still

uncertainty as to the value of this “threshold” in other areas. In the

mountains of the western United States, for example, the susceptibility of

lakes to acidification appears to be greater than in watersheds of the

northeastern U.S. (Roth et al, 1985). A more complete discussion of

uncertainties plaguing the use of the threshold concept in ecotoxicology  is

found in Cairns and Harte (1985).

Even if we had confidence in the location of a pH threshold, we would still

not know exactly what the effect on precipitation pH would be for any

specified emissions reduction plan. Here the uncertainty stems from the

complexity of the source-receptor relation.

The uncertainty in deducing the effect of a particular level of emissions

reduction on precipitation pH must be combined with the further uncertainty in

deducing the effect of a reduction in precipitation pH on surface water

acidity. By combining these two uncertainties, the overall uncertainty in

steps 2 to 4 of Table 1 can be determined. At the other stages in the impact
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assessment further opportunity for error arises. The combined error is

almost invariably sufficiently large to make it difficult to obtain a precise

characterization of the ecological benefits from a particular emissions-

reduction plan.

The fact that one cannot precisely characterize the benefits of a

pollution-abatement policy should not he taken to mean that the policy is

unwarranted. Even though an economic analysis might not produce a reliable

cost-benefit ratio, it can lead to a range of uncertainty in that ratio,

which can then be evaluated through the political process to determine what

policy action is warranted. The first step, however, must be to have a

systematic approach to the analysis of uncertainty; this is discussed in the

following section.

~ Framework for Analysis

The sequence of steps in an environmental impact assessment as shown on the

left hand side of Table 1 provides a convenient framework for analysing the

propagation of error in such assessments. Generally, the relation between

the ith and the i+lst stage in the gequence is likely to look like one of the

three graphs shown in figure 1. In each of the graphs, the horizontal axis

represents the variable describing the ith stage and the vertical axis

represents the subsequent one down the chain. The first of these three

graphs illustrates a linear relation, in which the response, or output, at the

subsequent stage is proportional to the input from the one before, as, for

example, if the loss of organisms is proportional to the concentration of a

pollutant. The second one illustrates a threshold process, in which an

output is only weakly dependent on an input for small values of the input, but

when the Input exceeds a critical value, then the output rises sharply. The
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third graph in Figure 1 illustrates

ceases to be strongly dependent on

value.

a saturation process, in which an output

input once the input exceeds a critical

These three basic types of relations between sequential stages in the

impact chain can be modified or combined to describe, generically, most

real processes. For example, the graphs can be turned upside down to

describe processes in which an output is a decreasing function of input. Or

graphs l-b and l-c can be combined to describe a process with a threshold at a

relatively low value of the input and a saturation effect at a higher one.

If knowledge of the functional relation between two sequential stages in

the chain were complete, and the Input data were known with perfect precision

and accuracy* then a graph of the function describing the

indeed, look something like one of the plots in Figure 1,

there is always uncertainty in both knowledge of functional

relation might,

But, in reality,

relations and in

the data needed to substitute into those functions. These uncertainties

propagate down the impact chain, sometimes leading to a surprisingly

level of uncertainty at the end.

Two types of uncertainty were alluded to above. one results from

will

high

poor

knowledge of the dynamics of the processes--i.e.  uncertainty in our

understanding of the form of the relation between variables--and one results

from incertain numerical values for data. For example, suppose that we are

interested in estimating the uncertainty In our knowledge of the lessening of

damage to plankton populations due to an expected decline in the rate of input

of a pollutant to a lake. Because it is difficult to predict with high

------------------------  ------------
+
‘Precisionn refers to the detail with which a number is

of significant figures. “Accuracyn refers to how close
true, or real, value. Thus if I state my height is
being precise but inaccurate. Oftentimes authors will
for accuracy, providing more significant figures than
giving the illusion that they are highly accurate.
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accuracy how the concentration of a pollutant in a lake will respond to a

change in the input rate, there will be uncertainty in our knowledge of what

the concentration of pollutant in the lakewater will be. On top of that we

will have, at best, only partial knowledge of how the plankton population will

respond to any precisely stated change in the pollutant concentration. In

other wordg, even with perfectly accurate data describing the pollutant, our

knowledge of the functional form of the relation between pollutant

concentration and plankton survivability is uncertain.

Because of the uncertainty in our knowledge of functional relations, the

graphs shown in Figure 1 must be modified as in Figure 2. Furthermore,

because the input data (the horizontal axis variable) are likely to be

uncertain, the output (the vertical axis variable) is also going to have an

uncertainty that reflects the fuzziness of the input data. At each stage in

the chain, the uncertainty may be amplified or damped as uncertainty in the

output from one stage becomes uncertainty in the input to the next. Figure 3

provides a generic illustration of how the error will propagate down the

chain. The range of uncertainty is shown to broaden in the figure, a result

of the width and steepness of the functional forms assumed. If probability

distributions characterizing the likelihood of the parameters taking on

particular values within the range of uncertainty are known, then a more

sophisticated analysis can be carried out; shown here is the simpler case in

which only the propagation of the range of uncertainty is described.

A useful analysis of the consequences for policy makers of this sort of

error propagation is given in Reckhow (1984). In the following section, we

discuss some general results about uncertainty that can be deduced from the

above considerations.
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General Results: The

Quantities such as

to which a numerical

‘Fallacy of the Mean” and ‘Error Biomagnificationn— —  —  ——

fish productivity or water clarity, indeed any parameter

range can be ascribed, can be characterized by a mean

value and a range of uncertainty about that mean. Because it 1s much simpler

to focus on a mean value, which is a single number, rather than on the range

of uncertainty, which is at the very least a range of numbers (often with a

complicated interpretation attached explaining what that range really refers

to) it is not uncommon for analysts to be asked questions suchas ‘if I take

the mean value of the pollutant concentration and substitute that into the

formula relating concentration to plankton survivability, then what mean value

will I obt’aln for plankton survivability?” This question reflects a

fundamental confusion: a function evaluated at the mean value of its

independent variable is generally not equal to the mean value of the function.

Indeed, as shown below, considerable error can result if mean values are

estimated by

How will

between two

commiting this ‘fallacy of the mean”.

the general shape of the graph (as is Figure 1) of the relation

successive stages in impact assessment influence the error

committed by assuming that a function of the mean equals the mean of the

function? Figure 4 Illustrates the answer to this question. In this

figure, the parameter, a,

range from B to C and its

this range, x(a) takes on

hasan equal probabilityof lying anywhere in the

mean is midway between at E. At the upper end of

the value Dwhile at the lower end it takes on the

value A. As the figure shows, if the relation between an independent

variable, a, and a dependent variable, x, is linear, then despite uncertainty

in our knowledge of a, the mean value of x, denoted by X, Is equal to X(a)

evaluated at a, the mean value of a. In equation form, x = x(a). For the

case of a threshold-type relation, this figure shows why X > x(a), while for a

saturation process, X < x(a).
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Figure 4

The relation between the mean value of X and the value of X evaluated at the
mean value of the parameter, a, upon which it depends, is shown for the
three cases of a linear (a), upward curving (b), and downward curving (c)
relation between X and a.
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This can be very important in practice; for relations characterized by very

steeply curved functions the use of the mean value of the independent

variable for evaluating the mean value of the dependent one can lead to a

gross under- or over-estimation, depending on the type of curvature in the

functional relation. To illustrate this, we present the following example.

The attenuation of light with depth in a relatively transparent lake obeys

a simple formula: I(d) = I o exp(-vd),  where I(d) is the intensity at depth d,

IO ‘s the intensity of light at the surface, and v Is a constant

characterizing the transparency of the water. The more opaque the water, the

larger the value of V . Primary productivity of aquatic plants at any

particular depth will be roughly proportional to the value of I,at that depth,

although it also depends, of course, on concentrations of essential nutrients

such as nitrate and phosphate. Suppose siltation results in a large value of

v. We will assume that the mean value of v is 0.3/meter and that the range

of uncertainty is ~ 0.02/meter.

the sake of simplicity) that the

anywhere in the range from 0.28

expected to reduce the value

uncertainty increased because

program will be. At a depth of,

We will interpret this range to mean (for

actual value of v is equally likely to lie

to 0.32/meter. Suppose erosion control is

of v to 0.17 ~ 0.09, with the range of

it is not known how effective the control

say, 20 meters, the mean value of I prior to

the erosion control that would be calculated (incorrectly) by substituting the

mean value of v into the formula for I(d) is 10 exp(-6.0) or 0.0025 l.”

After the control is implemented, the similarly incorrect value IS

I’. exp(-3.4) = 0.0331.3 an increase of I by a factor of about 12. However,

if the actual mean value of I is calculated properly, not by substituting Into

exp(-vd) the mean value of v but rather averaging over the ‘ange ‘f

uncertainty in v , then we find that erosion control results, on the average,

in twice as great an increase in mean light intensity at 20 meters. Leaving

14
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aside subtleties such as whether plants respond to the average light intensity

they receive or to some more complicated value that depends on the

fluctuations, there is clearly a large potential for error in naively

estimating mean values by being oblivious to the uncertainties.

We emphasize that the propagation of error by this means can

from a situation where one knows what the uncertainties are

result either

but uses the

incorrect formula relating mean values, or from a situation where one simply

under- or overestimates the magnitudes of the uncertainties but uses a correct

averaging procedure for estimating mean values.

In the modular approach to error propagation discussed in the previous

section, there is an opportunity for errors of this type to either be

reinforced or to cancel. If a sequence of relations between the variables

describing the successive stages in the impact chain are al I of, say, the

threshold type, or more generally, of any similar curvature, then the error

propagation that results from ignorance of the true range of uncertainty will

be reinforcing, leading to greater and greater erroras one moves along the

chain. In contrast, if curves of types I.b and 1.c from Figure 1 are equally

represented in the chain, then the tendency will be for the errors of that

type to cancel.

Next, we turn to the topic of ‘error biomagnificationn.

a toxic substance, will frequently increase as one probes

chain (not to be confused with the impact assessment

Error, like many

higher up the food

chain in Fig. 1),

although the mechanism that accounts for error biomagnification  is quite

different from that for toxic substance biomagnification. To see how error

biomagnification arises, consider the following relatively simple model for a

food chain. Figure 5 illustrates the model, showing the inflows and outflows

of biomass from each link in the chain. The links can be thought of as

15
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X2 + yz X22

- E12) i312 xl

X12

‘3

‘2

chain and the rates of biomass input and output from each
as described by a simple Lotka-Volterra model.



species (for example, grass,

lynx, etc.) or as functional

producers, herbivores, first

which is eaten by rabbits, which are eaten by

groupings of species (for example, primary

carnivores, . . . and on up to top carnivores).

In equation form, the model reads as follows:

dX1

--- = alxl - ylxl 2- 812X1X2
dt

dX2

--- = E12B12X1X2 -a2X2 -Y2X22 - B23X2X3
dt

dX3
--- = ‘23$23X2X3 -a3X3 -Y3X32  - ‘34X3X4
dt

.
●

✎

dXN
--- = ‘N-l,N%-l,NXN-lXN -aNXN -yNXN2”
dt

In these equations, the Xi are the biomasses of the components; the

coefficients Bij are ‘ate constants describing the predation of species j

upon species i; the coefficients Eij describe the efficiency of incorporation

of prey biomass by the predator; and the coefficients cii and yI are gro~h and

death rates for the individual species. The presence of the Yi terms

represents a negative feedback mechanism induced by the finite carrying

capacity of any realistic environment. They result in steady-state solutions

that are stable against perturbations such as the removal of some percentage

of the biomass of the system. Indeed, the only solution to these equations

iS one in which all’ the xi approach time-independent values. Although real

populations are not found in steady-state

individuals in real populations generally exibit

dependence), models with steady-state solutions

17
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time-averaged behavior of such populations. Although simple models of this

sort are generally unreliable for making detailed predictions of the values of

the va.riables~ Xi(t), they are useful for exploring the qualitative features

of ecosystems.

Suppose that the growth rate of the primary producers is affected by a

pollutant, but that there is some uncertainty about the magnitude of the

effect, In other words, suppose that the ValUe Ofal iS knom only to be in

the range between 51 +U and 51 -U where 51 iS the mean value and a iS a

measure of the uncertainty in the mean. How will the uncertainty In affect

the uncertainty in

A simple two-level

the steady-state

model illustrates

values of the Individual variables, Xi?

the general idea:

dX 1
--- = Cllxl - ylxl 2 - B12X1X2
dt

dX2

--- = E12B12X1X2 - ~,2x2 -Y2X22”
dt

For this case the steady-state solutions for the Xi are:

xl =

X2 =

~z~lz +~lY2
--------------- and
E126122 +Y1Y2

u1E12612 -a2yl
--------------- .

‘12$122+Y1Y2

A measure of the relative uncertainty in the xi caused by the uncertainty in

al is (u/xl)(axl/3q). Thus the ratio of the relative uncertainty inXl to

that in X2, which we denote by R12~ is

(u/xl )(axln~l)
R12 = ----------------- .

(~/x2 )(3x2/aq)

This canbe shown to equal (y2X2)/(a2 + y2X2)S which

18
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other words, the relati Ve errOr in X2 induced by the uncertainty in al is

necessarily greater than that for Xl” For this two-level model, if the

uncertainty lies in our knowledge of a2, the parameter characterizing the

death rate of the predator rather than the growth rate of the prey, then the

result is ambiguous; the ValUe Of R12 will depend on the relative magnitude of

al and YIXIO In particular, if the latter term Is not small compared to the

former, then again R12 will be less than unity. Thus in this two-level

model, if the uncertainty lies in our characterization of the base of the food

chain, then uncertainty “biomagnifies” up the chain, whereas if it lies at the

top of the chain, then it may or may not magnify down the chain.

Results from three-level and four-level models are shown in Figure 6, both

for the case in which the original uncertainty lies at the base of the food

chain and the error propagates up to higher trophic levels and for the case in

which the original uncertainty lies at the top of the food chain and the error

‘bounces offn the base and propagates back up. Note how a relatively small

initial error in either the phytoplankton growth rate or the fish death rate

results in progressively larger uncertainty as one progresses up the food

chain.

It would be of considerable interest to characterize the system properties

that determine the degree to which error ‘biomagnificationw occurs. It iS

likely that properties of the food chain such as the ratios of biomasses or

population densities at successive levels and the ratio of predation rates to

other death rates will be important factors in more complex situations than in

the grossly over-simplified models treated here.

The implications of this for ecological impact assessment can be of great

importance. The interest of the public is usually in the higher levels of

the food chain--be it fish for recreation and food or exotic wildlife for
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Figure 6a

The response of the populations in a three-tiered aquatic
ecosystem (measured in biomass per unit area, initial biomass
ratios: 50 phytoplankton: 10 zooplankton : 1 small fish) to -1%,
-2~, and -3% changes In the phytoplankton  growth rate. SolId,
dotted, and (partially) dashed lines give the patha for
phytoplankton, zooplankton , and small fish, respectively. This
figure corresponds to a situation in which the degree of
perturbation in the growth rate, caused, for example by pollution,
is uncertain, but is known to lie within some range. The effect
of this uncertainty on the relative magnitudes of population
changes in the thrwe trophic levels is shown.
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The response of the populations In a three-tiered aquatic
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ratios: 50 phytoplankton: 10 zooplankton : 1 small fish) to +2s~
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within some range. The effect of this uncertainty on the
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The response of the populations in a four-tiered aquatic ecosystem
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fish, and larger fish populations are given by the upper solid
curve, the dotted curve, and partially dashed curve, and the lower
solid curve, respectively. This figure corresponds to a situation
in which the degree of perturbation in the growth rate, caused,
for example by pollution, is uncertain, but is known to lie within
some range. The effect of this uncertainty on the relative
magnitudes ofpopulatlon changes in the four trophic levels is
shown .
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nature study (or the public itself, which occupies the top carnivore spot in

the global ecosystem!). The increase in error as it propagates up the chain

will tend to render difficult the prediction of the magnitude of precisely

those effects that the public is most concerned about. While an enormous

effort is sometimes expended trying to determine precisely the environmental

concentration of a pollutant, the effort may be misplaced if error propagation

leada to large uncertainties higher up in the food chain where the public

welfare is more directly and obviously Involved.

Like toxic substance biomagnification, this magnification of error is

unavoidable. It is a consequence of the fundamental ecological dynamics of a

food chain and can not be circumvented. Like toxic substance

biomagnification, whose effects at the higher trophic  levels can be minimized

by keeping the level of the toxicant in the environment to a minimum, the

effect of error propagation up a food chain can be minimized by keeping to a

minimum the initial error in our knowledge of the effect of the toxicant on

the growth of the primary producers.

We have not discussed here the question raised

concerning the probability distribution of the quantity

in the Introduction

of interest within its

range of uncertainty. As mentioned previously, when a parameter such as a

fish population is uncertain, but a probability

calculable, then economic valuation is easier than

distribution is unknown. Consider an uncertainty in

on the growth rate of a species of phytoplankton, as

distribution for it is

when such a probability

the effect of a toxicant

in our simple food chain

model, that has the characteristic that the error in our knowledge of it is

gaussian-distributed. What will the distribution of biomagnified  error be in

the fish population? Unfortunately, no general statement that is model-

Independent can be made about this at present. The particular, unabashedly

unrealistic, model used to motivate the existence of the phenomenon of error
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biomagnification provides a precise answer to this question, but other models

will generally provide other answers. Because we lack confidence in any

particular model or class of models for the analysis of complex ecosystems,

further work is clearly needed here..

Since our ability to characterize ecological uncertainty with probability

distributions is presently limited, it might seem like a sensible strategy for

ecologists to place more emphasis on reducing the range

we show in the following Section, that approach, too,

indeed, they are even more stubborn than are the

heretofore.

of uncertainty. As

has its limits and,

problems discussed

Refractory Error in ECO1ORY——

Some types of uncertainty in impact assessment are easily remedied. If a

few more observers spend a little more time gathering data or improving their

models, a noticeable improvement will result and these remediable

errors will be eliminated or at least greatly reduced in magnitude.

interesting class of errors can not be pushed to zero, however,

significantly reduced in magnitude regardless of how much effort is

types of

A more

or even

expended

tO do SO. These are the refractory or intrinsic uncertainties whose origin

we now discuss. In a general sense, they stem from two sources: uniqueness

and sensitivity to initial conditions. We explain these in turn.

The uniqueness of individual ecosystems and of the planetary environment in

its entirety renders it impossible to achieve the slna qua non of the

classical scientific experimental approach--replication of the

investigation. Without the benefit of replicable systems, a

system under

statistically

meaningful analysis of the effect of a toxin on an ecosystem is unattainable.

The reason is that in any dose-response study, be it at the level of an

individual organism or at the ecosystem level, one’s interest is always in the
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difference between a treatment

requires at least two initially

treatment and control systems

and a control system. Inherently, this

identical systems. If replication of the

is also desired so that a measure of the

statistical significance of the dose-response relarion can be derived, then

even more identical systems are required. Ecosystems, unfortunately, are not

so obliging. Two nearby lakes, two forests in the same region, and even two

patches of meadow close by one another differ in myraid ways; ecologists

will never be aware of all of them, let alone be able to quantify them.

To attempt a resolution of this dilemma, interest in ecological microcosm9

has recently accelerated. Microcosms are segments of natural ecosystems of a

size convenient for laboratory replication and analysis. Lake microcosms,

for example, consist of containers filled with lake water and possibly lake

sediments taken from a real lake. If appropriate precautions are taken

in the design, initiation, and operation of these systems, they can be

replicated adequately for periods of up to several months and used for

toxicological testing. Because they can be put together in such a way that a

large fraction of the natural ecological diversity in the parent system is

present in the microcosms, they offer a partial solution to the problem of

uniqueness. Valuable as the microcosm approach is for ecotoxicological

testing, problems of size or scale inherently limit its usefulness. Most

importantly, it is not feasible to place large plants an animals in them; to

do so would result in wildly unrealistic behavior, both with respect to

chemical concentrations and population densities in the microcosms.

Therefore, the very types of organisms of greatest interest to the public can

not be studied in such systems. In addition, long-term microcosm

investigations (usually of more than a few months duration) are not possible

without jeopardizing the ecological realism (that is, the degree of similarity

between the control microcosms and the parent ecosystem from which the
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microcosms were derived) of the microcosms.

Which brings us to the second refractory source of uncertainty--

sensitivity to initial conditions. Ecosystems, like the global climate

systemp are complex at many spatial and temporal dimensions. That is, within

such systems microscopic behavior and macroscopic behavior are present and are

strongly coupled. For example, the population dynamics of microbes can

affect the health of fish in a lake, and at a molecular level, the diffusion

of nutrients and the turbulence of the water can affect the microbe

populations. In the global climate system, atmospheric turbulence influences

climate on a macroscopic scale. In systems where such different dimensions

are coupled and chaotic or turbulent behavior is important, the ability to

predict the future consequences of the system is severly limited. In a

profound analysis of the effect of turbulence on climate prediction, Lorenz

(19691 showed that microscopic turbulence introduces an intrinsic source of

error in

behavior

amount of

the prediction process.

of the climate incredibly

detailed initial conditions

In particular, it renders the future

sensitive to initial conditions. The

one needs to measure in order to predict

future climate with any specified degree of accuracy increases faster than

exponentially with the period of time into the future one wants to predict the

climate. Long term prediction with the same detail and accuracy aswe now

can achieve for one or two day predictions thus becomes intrinsically

Impossible for a practical reason: we cannot gather sufficiently detailed

measurements on today’s

The deep reason for

systems possessing many

climate.

this phenomenon is the extreme sensitivity of complex

scales of motion, such as systems with turbulence, to

small changes in initial conditions. Platt et al. (1977) investigated

ecosystems and found a similar sensitivity to initial conditions.

likely, in fact, that ecosystems, generally, are characterized by

marine

It iS

such a
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sensitivity,

Conclusion

The major

past decade
,

predict with

although this has not been investigated yet.

advances in environmentally relevant ecological research In the

have not been in the direction of developing models that can

greater accuracy the future state of a disturbed ecosystem or the

distribution of values of some uncertain parameter within its range of

uncertainty. Rather the direction of progress has been in characterizing the

features of ecosystems that render them either vulnerable or susceptible to

change when subjected to stress and in Identifying

uncertainty. Rather than making substantial progress

one “correctW mathematical model for predicting the

the major sources of

in the development of

future behavior of an

ecosystem, the effort has been to search for relatively model-independent

truths. Valuable as this information 1s, it does not necessarily provide the

type of Information economists need if they are to apply valuation procedures

to realistic situations. Error propagation and the existence of refractory

sources of uncertainty in ecology must be taken into account if realistic

goals for benefit-cost analysis in environmental policy are to be set. Perhaps

most importantly, uncertainty about uncertainty-- that is, uncertainty about

the probability distribution of ecological variables within their range of

uncertainty-- limits

error distributions

can be reduced by

progress toward more rational decision making. Perhaps

can be better characterized and refractory uncertainties

more intensive analysis of ensembles of models In

conjunction with properly designed laboratory and field studies. In any

event, progress toward the goal of more rational decision making will

require that economists and ecologists working at the interface of these two

disciplines are anre of the internal constraints of each otherst field,

while at the same time they sharpen their tools within their own.
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